57 research outputs found

    URegM: a unified prediction model of resource consumption for refactoring software smells in open source cloud

    Full text link
    The low cost and rapid provisioning capabilities have made the cloud a desirable platform to launch complex scientific applications. However, resource utilization optimization is a significant challenge for cloud service providers, since the earlier focus is provided on optimizing resources for the applications that run on the cloud, with a low emphasis being provided on optimizing resource utilization of the cloud computing internal processes. Code refactoring has been associated with improving the maintenance and understanding of software code. However, analyzing the impact of the refactoring source code of the cloud and studying its impact on cloud resource usage require further analysis. In this paper, we propose a framework called Unified Regression Modelling (URegM) which predicts the impact of code smell refactoring on cloud resource usage. We test our experiments in a real-life cloud environment using a complex scientific application as a workload. Results show that URegM is capable of accurately predicting resource consumption due to code smell refactoring. This will permit cloud service providers with advanced knowledge about the impact of refactoring code smells on resource consumption, thus allowing them to plan their resource provisioning and code refactoring more effectively

    Qualitative analysis of the relationship between design smells and software engineering challenges

    Full text link
    Software design debt aims to elucidate the rectification attempts of the present design flaws and studies the influence of those to the cost and time of the software. Design smells are a key cause of incurring design debt. Although the impact of design smells on design debt have been predominantly considered in current literature, how design smells are caused due to not following software engineering best practices require more exploration. This research provides a tool which is used for design smell detection in Java software by analyzing large volume of source codes. More specifically, 409,539 Lines of Code (LoC) and 17,760 class files of open source Java software are analyzed here. Obtained results show desirable precision values ranging from 81.01\% to 93.43\%. Based on the output of the tool, a study is conducted to relate the cause of the detected design smells to two software engineering challenges namely "irregular team meetings" and "scope creep". As a result, the gained information will provide insight to the software engineers to take necessary steps of design remediation actions.Comment: arXiv admin note: substantial text overlap with arXiv:1910.0542
    • …
    corecore